Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Lett ; 312(1): 82-90, 2011 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-21893382

RESUMO

Clearly new breast cancer models are necessary in developing novel therapies. To address this challenge, we examined mammary tumor formation in the Syrian hamster using the chemical carcinogen N-methyl-N-nitrosourea (MNU). A single 50mg/kg intraperitoneal dose of MNU resulted in a 60% incidence of premalignant mammary lesions, and a 20% incidence of mammary adenocarcinomas. Two cell lines, HMAM4A and HMAM4B, were derived from one of the primary mammary tumors induced by MNU. The morphology of the primary tumor was similar to a high-grade poorly differentiated adenocarcinoma in human breast cancer. The primary tumor stained positively for both HER-2/neu and pancytokeratin, and negatively for both cytokeratin 5/6 and p63. When the HMAM4B cell line was implanted subcutaneously into syngeneic female hamsters, tumors grew at a take rate of 50%. A tumor derived from HMAM4B cells implanted into a syngeneic hamster was further propagated in vitro as a stable cell line HMAM5. The HMAM5 cells grew in female syngeneic hamsters with a 70% take rate of tumor formation. These cells proliferate in vitro, form colonies in soft agar, and are aneuploid with a modal chromosomal number of 74 (the normal chromosome number for Syrian hamster is 44). To determine responsiveness to the estrogen receptor (ER), a cell proliferation assay was examined using increasing concentrations of tamoxifen. Both HMAM5 and human MCF-7 (ER positive) cells showed a similar decrease at 24h. However, MDA-MB-231 (ER negative) cells were relatively insensitive to any decrease in proliferation from tamoxifen treatment. These results suggest that the HMAM5 cell line was likely derived from a luminal B subtype of mammary tumor. These results also represent characterization of the first mammary tumor cell line available from the Syrian hamster. The HMAM5 cell line is likely to be useful as an immunocompetent model for human breast cancer in developing novel therapies.


Assuntos
Adenocarcinoma/patologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Neoplasias Mamárias Experimentais/patologia , Metilnitrosoureia , Adenocarcinoma/induzido quimicamente , Animais , Carcinógenos , Cricetinae , Feminino , Neoplasias Mamárias Experimentais/induzido quimicamente , Mesocricetus
2.
Exp Dermatol ; 18(4): 362-9, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18803656

RESUMO

The purpose of this study was to determine the effect of transplanted human mesenchymal stem cells (hMSCs) on wound healing. In this model, full-thickness cutaneous wounds were created by incision in the skin of adult New Zealand white rabbits and treated by transplanted hMSCs into the wounds. Wound healing was evaluated by histological analysis and tensiometry over time. A total of 15 New Zealand white rabbits with 10 wounds per animal were examined in this study. Animals were treated with hMSCs and euthanised at 3, 7, 14, 21 and 80 days after manipulation. The hMSCs were labelled with a fluorescent dye (CM-DiI), suspended in phosphate-buffered saline and used to treat full-thickness incisional wounds in rabbit skin. Tensiometry and histology were used to characterise the wound-healing rate of the incisional wounds. These results showed that transplanted hMSCs significantly inhibited scar formation and increased the tensile strength of the wounds. Importantly, MSCs from genetically unrelated donors did not appear to induce an immunologic response. In conclusion, human mesenchymal stem cell therapy is a viable approach to significantly affect the course of normal cutaneous wound healing and significantly increase the tensile strength.


Assuntos
Transplante de Células-Tronco Mesenquimais/métodos , Pele/lesões , Cicatrização/fisiologia , Animais , Cicatriz/prevenção & controle , Humanos , Modelos Animais , Coelhos , Pele/patologia , Resistência à Tração/fisiologia , Fatores de Tempo , Transplante Heterólogo
3.
Virol J ; 5: 98, 2008 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-18718011

RESUMO

Despite the many potential advantages of Ad vectors for vaccine application, the full utility of current Ad vaccines may be limited by the host anti-vector immune response. Direct incorporation of antigens into the adenovirus capsid offers a new and exciting approach for vaccination strategies; this strategy exploits the inherent antigenicity of the Ad vector. Critical to exploiting Ad in this new context is the placement of antigenic epitopes within the major Ad capsid protein, hexon. In our current study we illustrate that we have the capability to place a range of antigenic epitopes within Ad5 capsid protein hexon hypervariable regions (HVRs) 2 or 5, thus producing viable Ad virions. Our data define the maximal incorporation size at HVR2 or HVR5 as it relates to identical antigenic epitopes. In addition, this data suggests that Ad5 HVR5 is more permissive to a range of insertions. Most importantly, repeated administration of our hexon-modified viruses resulted in a secondary anti-antigen response, whereas minimal secondary effect was present after administration of Ad5 control. Our study describes antigen placement and optimization within the context of the capsid incorporation approach of Ad vaccine employment, thereby broadening this new methodology.


Assuntos
Adenoviridae/genética , Adenoviridae/imunologia , Antígenos/imunologia , Proteínas do Capsídeo/genética , Engenharia Genética , Vetores Genéticos/administração & dosagem , Vacinas/administração & dosagem , Animais , Antígenos/genética , Proteínas do Capsídeo/imunologia , Linhagem Celular , Epitopos/genética , Epitopos/imunologia , Técnicas de Transferência de Genes , Vetores Genéticos/genética , Vetores Genéticos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Vacinas/genética , Vacinas/imunologia
4.
Open Gene Ther J ; 1: 7-11, 2008 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-19834585

RESUMO

Endothelial cells have been noted to have relatively low expression of the native receptor for adenovirus serotype 5 (Ad5), coxsackie and adenovirus receptor (CAR), and are thus refractory to Ad5 infection. In this study, we hypothesize that increases in the infectivity of Ad5 in primary human pulmonary artery (HPAEC), coronary artery (HCAEC) and umbilical vein endothelial cells (HUVEC) can be achieved through genetic capsid modification of Ad5 to bypass CAR-dependent infection. The modifications tested in this study include incorporation of an integrin-binding RGD peptide motif (Ad5.RGD), a poly-lysine motif (Ad5.pK7), a combination of both of these peptide domains (Ad5.RGD.pK7), an adenovirus serotype 3 knob domain (Ad5/3Luc1) and canine adenovirus serotype 1 or 2 knob domains (Ad5Luc1-CK1 and Ad5Luc1-CK2). In HPAEC and HCAEC, the greatest infectivity enhancements were achieved using Ad5/3Luc1 (26-fold and 30-fold respectively). HUVEC was most readily infected by Ad5Luc1-CK1 (213-fold). These results demonstrate that gains in Ad5 infectivity in endothelial cells can be accomplished with genetic capsid modifications.

5.
Breast Cancer Res Treat ; 108(1): 43-55, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17508279

RESUMO

BACKGROUND: In view of the limited success of available treatment modalities for a wide array of cancer, alternative and complementary therapeutic strategies need to be developed. Virotherapy employing conditionally replicative adenoviruses (CRAds) represents a promising targeted intervention relevant to a wide array of neoplastic diseases. Critical to the realization of an acceptable therapeutic index using virotherapy in clinical trials is the achievement of oncolytic replication in tumor cells, while avoiding non-specific replication in normal tissues. In this report, we exploited cancer-specific control of mRNA translation initiation in order to achieve enhanced replicative specificity of CRAd virotherapy agents. Heretofore, the achievement of replicative specificity of CRAd agents has been accomplished either by viral genome deletions or incorporation of tumor selective promoters. In contrast, control of mRNA translation has not been exploited for the design of tumor specific replicating viruses to date. We show herein, the utility of a novel approach that combines both transcriptional and translational regulation strategies for the key goal of replicative specificity. METHODS: We describe the construction of a CRAd with cancer specific gene transcriptional control using the CXCR4 gene promoter (TSP) and cancer specific mRNA translational control using a 5'-untranslated region (5'-UTR) element from the FGF-2 (Fibroblast Growth Factor-2) mRNA. RESULTS: Both in vitro and in vivo studies demonstrated that our CRAd agent retains anti-tumor potency. Importantly, assessment of replicative specificity using stringent tumor and non-tumor tissue slice systems demonstrated significant improvement in tumor selectivity. CONCLUSIONS: Our study addresses a conceptually new paradigm: dual targeting of transgene expression to cancer cells using both transcriptional and mRNA translational control. Our novel approach addresses the key issue of replicative specificity and can potentially be generalized to a wide array of tumor types, whereby tumor selective patterns of gene expression and mRNA translational control can be exploited.


Assuntos
Adenoviridae/genética , Neoplasias da Mama/terapia , Terapia Viral Oncolítica/métodos , Biossíntese de Proteínas , RNA Mensageiro/biossíntese , Transcrição Gênica , Regiões 5' não Traduzidas/genética , Proteínas E1A de Adenovirus/genética , Animais , Western Blotting , Proteína p300 Associada a E1A/genética , Feminino , Fatores de Crescimento de Fibroblastos/genética , Vetores Genéticos , Humanos , Camundongos , Camundongos Nus , Regiões Promotoras Genéticas , Receptores CXCR4/genética , Replicação Viral
6.
Breast Cancer Res Treat ; 105(2): 157-67, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17221158

RESUMO

PURPOSE: Alternative and complementary therapeutic strategies need to be developed for metastatic breast cancer. Virotherapy is a novel therapeutic approach for the treatment of cancer in which the replicating virus itself is the anticancer agent. However, the success of virotherapy has been limited due to inefficient virus delivery to the tumor site. The present study addresses the utility of human mesenchymal stem cells (hMSCs) as intermediate carriers for conditionally replicating adenoviruses (CRAds) to target metastatic breast cancer in vivo. EXPERIMENTAL DESIGN: HMSC were transduced with CRAds. We used a SCID mouse xenograft model to examine the effects of systemically injected CRAd loaded hMSC or CRAd alone on the growth of MDA-MB-231 derived pulmonary metastases (experimental metastases model) in vivo and on overall survival. RESULTS: Intravenous injection of CRAd loaded hMSCs into mice with established MDA-MB-231 pulmonary metastatic disease homed to the tumor site and led to extended mouse survival compared to mice treated with CRAd alone. CONCLUSION: Injected hMSCs transduced with CRAds suppressed the growth of pulmonary metastases, presumably through viral amplification in the hMSCs. Thus, hMSCs may be an effective platform for the targeted delivery of CRAds to distant cancer sites such as metastatic breast cancer.


Assuntos
Adenoviridae/genética , Neoplasias da Mama/terapia , Terapia Genética , Neoplasias Pulmonares/terapia , Células-Tronco Mesenquimais , Receptores CXCR4/genética , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Feminino , Vetores Genéticos , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/secundário , Camundongos , Camundongos SCID , Regiões Promotoras Genéticas , Receptores CXCR4/metabolismo , Taxa de Sobrevida , Transplante Heterólogo , Células Tumorais Cultivadas
7.
J Mol Med (Berl) ; 85(5): 481-96, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17219096

RESUMO

Fibromodulin, a member of the small leucine-rich proteoglycan family, has been recently suggested as a biologically significant mediator of fetal scarless repair. To assess the role of fibromodulin in the tissue remodeling, we constructed an adenoviral vector expressing human fibromodulin cDNA. We evaluated the effect of adenovirus-mediated overexpression of fibromodulin in vitro on transforming growth factors and metalloproteinases in fibroblasts and in vivo on full-thickness incisional wounds in a rabbit model. In vitro, we found that Ad-Fibromodulin induced a decrease of expression of TGF-beta(1) and TGF-beta(2) precursor proteins, but an increase in expression of TGF-beta(3) precursor protein and TGF-beta type II receptor. In addition, fibromodulin overexpression resulted in decreased MMP-1 and MMP-3 protein secretion but increased MMP-2, TIMP-1, and TIMP-2 secretion, whereas MMP-9 and MMP-13 were not influenced by fibromodulin overexpression. In vivo evaluation by histopathology and tensile strength demonstrated that Ad-Fibromodulin administration could ameliorate wound healing in incisional wounds. In conclusion, although the mechanism of scar formation in adult wounds remains incompletely understood, we found that fibromodulin overexpression improves wound healing in vivo, suggesting that fibromodulin may be a key mediator in reduced scarring.


Assuntos
Adenoviridae/genética , Cicatriz/prevenção & controle , Derme/metabolismo , Proteínas da Matriz Extracelular/biossíntese , Fibroblastos/metabolismo , Terapia Genética/métodos , Vetores Genéticos , Proteoglicanas/biossíntese , Cicatrização , Animais , Células Cultivadas , Cicatriz/genética , Cicatriz/metabolismo , Cicatriz/patologia , Cicatriz/fisiopatologia , Procedimentos Cirúrgicos Dermatológicos , Derme/citologia , Modelos Animais de Doenças , Proteínas da Matriz Extracelular/genética , Fibromodulina , Humanos , Metaloproteinases da Matriz Secretadas/metabolismo , Proteínas Serina-Treonina Quinases , Proteoglicanas/genética , Coelhos , Receptor do Fator de Crescimento Transformador beta Tipo II , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Resistência à Tração , Fatores de Tempo , Inibidores Teciduais de Metaloproteinases/metabolismo , Transfecção , Fatores de Crescimento Transformadores/metabolismo , Cicatrização/genética
8.
Lung Cancer ; 55(2): 145-56, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17113184

RESUMO

Conventional treatments are not adequate for the majority of lung cancer patients. Conditionally replicating adenoviruses (CRAds) represent a promising new modality for the treatment of neoplastic diseases, including non-small cell lung cancer. Specifically, following cellular infection, the virus replicates selectively in the infected tumor cells and kills the cells by cytolysis. Next, the progeny virions infect a new population of surrounding target cells, replicate again and eradicate the infected tumor cells while leaving normal cells unaffected. However, to date, there have been two main limitations to successful clinical application of these CRAd agents; i.e. poor infectivity and poor tumor specificity. Here we report the construction of a CRAd agent, CRAd-CXCR4.RGD, in which the adenovirus E1 gene is driven by a tumor-specific CXCR4 promoter and the viral infectivity is enhanced by a capsid modification, RGD4C. This agent CRAd-CXCR4.RGD, as expected, improved both of the viral infectivity and tumor specificity as evaluated in an established lung tumor cell line and in primary tumor tissue from multiple patients. As an added benefit, the activity of the CXCR4 promoter was low in human liver as compared to three other promoters regularly used for targeting tumors. In addition, this agent has the potential of targeting multiple other tumor cell types. From these data, the CRAd-CXCR4.RGD appears to be a promising novel CRAd agent for lung cancer targeting with low host toxicity.


Assuntos
Adenoviridae/genética , Carcinoma Pulmonar de Células não Pequenas/terapia , Neoplasias Pulmonares/terapia , Terapia Viral Oncolítica/métodos , Regiões Promotoras Genéticas , Receptores CXCR4/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Vetores Genéticos , Humanos , Fígado/metabolismo , Neoplasias Pulmonares/genética , Reação em Cadeia da Polimerase , Células Tumorais Cultivadas , Replicação Viral
9.
Int J Cancer ; 120(4): 935-41, 2007 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-17131341

RESUMO

Conditionally replicative adenoviruses (CRAds) represent novel therapeutic agents that have been recently applied in the context of breast cancer therapy. However, deficiencies in the ability of the adenovirus to infect target tumor cells and to specifically replicate within the tumor target represent key deficiencies preventing the realization of the full potential of this therapeutic approach. Minimal expression of the adenovirus serotype 5 (Ad5) receptor CAR (coxsackie and adenovirus receptor) on breast cancer cells represents a major limitation for Ad5-based virotherapy. Genetic fiber chimerism is a method to alter the tropism of Ad5-based CRAds to achieve CAR-independent infectivity of tumor cells. Here, we describe the use of a CRAd with cancer specific transcriptional control of the essential Ad5 E1A gene using the human CXCR4 gene promoter. We further modified the fiber protein of this agent by switching the knob domain with that of the adenovirus serotype 3. The oncolytic activity of this 5/3 fiber-modified CRAd was studied in breast cancer cell lines, primary breast cancer and human liver tissue slices from patients, and in a xenograft breast cancer mouse model. This infectivity enhanced CRAd agent showed improved replication and killing in breast cancer cells in vitro and in vivo with a remarkable specificity profile that was strongly attenuated in nonbreast cancer cells, as well as in normal human breast and liver tissues. In conclusion, utilization of a CRAd that combined infectivity enhancement strategies and transcriptional targeting improved the CRAd-based antineoplastic effects for breast cancer therapy.


Assuntos
Adenoviridae/fisiologia , Neoplasias da Mama/terapia , Terapia Viral Oncolítica , Regiões Promotoras Genéticas/genética , Receptores CXCR4/genética , Replicação Viral , Proteínas E1A de Adenovirus/genética , Animais , Mama/metabolismo , Mama/patologia , Mama/virologia , Neoplasias da Mama/metabolismo , Linhagem Celular , Proliferação de Células , Derme/metabolismo , Derme/patologia , Derme/virologia , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Fibroblastos/virologia , Vetores Genéticos/administração & dosagem , Vetores Genéticos/genética , Humanos , Fígado/metabolismo , Fígado/patologia , Fígado/virologia , Camundongos , Camundongos Endogâmicos BALB C , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Taxa de Sobrevida , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
10.
Mol Imaging ; 5(4): 510-9, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-17150163

RESUMO

An advantage of the adenoviral vector is its molecular flexibility, which allows for vector tropism modifications for the purpose of cell targeting. In addition to targeting ligands, the capacity to incorporate heterologous peptides has allowed capsid incorporation of other functionalities. We have defined the minor capsid protein IX (pIX) as a locus capable of presenting incorporated ligands on the virion surface. Thus, we sought to exploit the possibility of incorporating functional proteins at pIX. In our current study, we sought to expand the potential utility of our capsid labeling strategy by developing simultaneous imaging capacity for dedicated small animal positron emission tomography and bioluminescence imaging on a single adenoviral vector. Therefore, we constructed an adenovirus that incorporates a fusion protein of herpes simplex virus type 1 thymidine kinase and firefly luciferase (Luc) (TK-Luc) into adenovirus capsid pIX. Our study herein clearly demonstrates our ability to rescue viable adenoviral particles that display functional TK-Luc as a component of their capsid surface. Most importantly, Ad-pIX-TK-Luc retained dual enzymatic functions in vitro and in vivo. This dual-modality approach will allow dynamic or real-time imaging analysis of adenovirus-based interventions with maximized analytic flexibility and enhanced resolution potential.


Assuntos
Adenoviridae/genética , Adenoviridae/metabolismo , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Herpesvirus Humano 1/enzimologia , Herpesvirus Humano 1/genética , Luciferases de Vaga-Lume/genética , Luciferases de Vaga-Lume/metabolismo , Timidina Quinase/genética , Timidina Quinase/metabolismo , Animais , Sequência de Bases , Linhagem Celular , Primers do DNA/genética , Vetores Genéticos , Humanos , Camundongos , Camundongos Nus , Tomografia por Emissão de Pósitrons , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo
11.
Wound Repair Regen ; 14(5): 608-17, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-17014674

RESUMO

Genetically modified keratinocytes and fibroblasts are suitable for delivery of therapeutic genes capable of modifying the wound healing process. However, efficient gene delivery is a prerequisite for successful gene therapy of wounds. Whereas adenoviral vectors (Ads) exhibit superior levels of in vivo gene transfer, their transductional efficiency to cells resident within wounds may nonetheless be suboptimal, due to deficiency of the primary adenovirus receptor, coxsackie-adenovirus receptor (CAR). We explored CAR-independent transduction to fibroblasts and keratinocytes using a panel of CAR-independent fiber-modified Ads to determine enhancement of infectivity. These fiber-modified adenoviral vectors included Ad 3 knob (Ad5/3), canine Ad serotype 2 knob (Ad5CAV-2), RGD (Ad5.RGD), polylysine (Ad5.pK7), or both RGD and polylysine (Ad5.RGD.pK7). To evaluate whether transduction efficiencies of the fiber-modified adenoviral vectors correlated with the expression of their putative receptors on keratinocytes and fibroblasts, we analyzed the mRNA levels of CAR, alpha upsilon integrin, syndecan-1, and glypican-1 using quantitative polymerase chain reaction. Analysis of luciferase and green fluorescent protein transgene expression showed superior transduction efficiency of Ad5.pK7 in keratinocytes and Ad5.RGD.pK7 in fibroblasts. mRNA expression of alpha upsilon integrin, syndecan-1 and glypican-1 was significantly higher in primary fibroblasts than CAR. In keratinocytes, syndecan-1 expression was significantly higher than all the other receptors tested. Significant infectivity enhancement was achieved in keratinocytes and fibroblasts using fiber-modified adenoviral vectors. These strategies to enhance infectivity may help to achieve higher clinical efficacy of wound gene therapy.


Assuntos
Técnicas de Transferência de Genes , Terapia Genética/métodos , Vetores Genéticos , Ferimentos e Lesões/terapia , Adenoviridae/genética , Células Cultivadas , Fibroblastos/citologia , Fibroblastos/metabolismo , Glipicanas/metabolismo , Humanos , Integrinas/metabolismo , Queratinócitos/citologia , Queratinócitos/metabolismo , Reação em Cadeia da Polimerase , Sindecana-1/metabolismo , Transdução Genética , Cicatrização/fisiologia
12.
Mol Cancer Ther ; 5(3): 755-66, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16546991

RESUMO

Natural and genetically modified oncolytic viruses have been systematically tested as anticancer therapeutics. Among this group, conditionally replicative adenoviruses have been developed for a broad range of tumors with a rapid transition to clinical settings. Unfortunately, clinical trials have shown limited antitumor efficacy partly due to insufficient viral delivery to tumor sites. We investigated the possibility of using mesenchymal progenitor cells (MPC) as virus carriers based on the documented tumor-homing abilities of this cell population. We confirmed preferential tumor homing of MPCs in an animal model of ovarian carcinoma and evaluated the capacity of MPCs to be loaded with oncolytic adenoviruses. We showed that MPCs were efficiently infected with an adenovirus genetically modified for coxsackie and adenovirus receptor-independent infection (Ad5/3), which replicated in the cell carriers. MPCs loaded with Ad5/3 caused total cell killing when cocultured with a cancer cell line. In an animal model of ovarian cancer, MPC-based delivery of the Ad5/3 increased the survival of tumor-bearing mice compared with direct viral injection. Further, tumor imaging confirmed a decrease in tumor burden in animals treated with oncolytic virus delivered by MPC carriers compared with the direct injection of the adenovirus. These data show that MPCs can serve as intermediate carriers for replicative adenoviruses and suggest that the natural homing properties of specific cell types can be used for targeted delivery of these virions.


Assuntos
Adenoviridae/genética , Terapia Genética/métodos , Transplante de Células-Tronco Mesenquimais , Vírus Oncolíticos/genética , Neoplasias Ovarianas/terapia , Animais , Linhagem Celular Tumoral , Técnicas de Cocultura , Modelos Animais de Doenças , Feminino , Vetores Genéticos/genética , Humanos , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Endogâmicos , Neoplasias Ovarianas/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Oncogene ; 24(52): 7775-91, 2005 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-16299537

RESUMO

Virotherapy is an approach for the treatment of cancer, in which the replicating virus itself is the anticancer agent. Virotherapy exploits the lytic property of virus replication to kill tumor cells. As this approach relies on viral replication, the virus can self-amplify and spread in the tumor from an initial infection of only a few cells. The success of this approach is fundamentally based on the ability to deliver the replication-competent viral genome to target cells with a requisite level of efficiency. With virotherapy, while a number of transcriptional retargeting strategies have been utilized to restrict viral replication to tumor cells, this review will focus primarily on transductional retargeting strategies, whereby oncolytic viruses can be designed to selectively infect tumor cells. Using the adenoviral vector paradigm, there are three broad strategies useful for viral retargeting. One strategy uses heterologous retargeting ligands that are bispecific in that they bind both to the viral vector as well as to a cell surface target. A second strategy uses genetically modified viral vectors in which a cellular retargeting ligand is incorporated. A third strategy involves the construction of chimeric recombinant vectors, in which a capsid protein from one virus is exchanged for that of another. These transductional retargeting strategies have the potential for reducing deleterious side effects, and increasing the therapeutic index of virotherapeutic agents.


Assuntos
Adenoviridae/fisiologia , Terapia Viral Oncolítica , Vírus Oncolíticos/fisiologia , Adenoviridae/genética , Adenoviridae/patogenicidade , Proteínas do Capsídeo , Enterovirus , Vetores Genéticos , Ligantes , Fígado/patologia , Fígado/virologia , Neoplasias/terapia , Neoplasias/virologia , Receptores de Superfície Celular , Receptores Virais/fisiologia , Proteínas Recombinantes , Transcrição Gênica , Transdução Genética , Replicação Viral
14.
Cancer Biol Ther ; 4(11): 1203-10, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16177567

RESUMO

Successful adenoviral (Ad) vector-mediated strategies for breast cancer gene therapy and virotherapy have heretofore been hindered by low transduction efficiency. This has recently been understood to result from a relative paucity of expression of the primary adenovirus receptor, coxsackie-adenovirus-receptor (CAR), on primary tumor cells. To further investigate this issue, we evaluated the expression of CAR on breast cancer cell lines as well as primary breast cancer cells. With the exception of one patient sample, CAR expression was notably higher in the tumor cells from patients compared to CAR expression in the tumor cell lines. Furthermore, we explored CAR-independent targeting strategies to breast cancer tissue by exploring a panel of infectivity-enhanced Ad vectors, which contain CAR-independent targeting motifs for their utility in breast cancer gene therapy and virotherapy. These targeting motifs included Ad 3 knob (Ad5/3), canine Ad serotype 2 knob (Ad5CAV-2), RGD (Ad5.RGD), polylysine (Ad5.pK7), or both RGD and polylysine (Ad5.RGD.pK7), and were tested using the breast cancer tissue slice model, which is the most stringent substrate system available. Of all the tested tropism modified Ad vectors, Ad5/3 exhibited the highest transductional efficiency in breast cancer. These preclinical results suggest that Ad5/3 is the most useful modification to achieve higher clinical efficacy of breast cancer gene therapy and virotherapy.


Assuntos
Adenoviridae/química , Adenoviridae/genética , Neoplasias da Mama/terapia , Técnicas de Transferência de Genes , Vetores Genéticos , Adenoviridae/classificação , Adulto , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Carcinoma/patologia , Linhagem Celular Tumoral , Proteína de Membrana Semelhante a Receptor de Coxsackie e Adenovirus , Feminino , Humanos , Pessoa de Meia-Idade , Modelos Biológicos , Receptores Virais/metabolismo , Sorotipagem , Especificidade por Substrato , Transdução Genética , Células Tumorais Cultivadas
15.
Cancer Immunol Immunother ; 54(1): 51-60, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15693139

RESUMO

PURPOSE: The CD44 v7/8 splice variant that is frequently expressed in cervical carcinoma and rarely expressed in normal tissues displays promising properties as a target antigen for cancer immune therapy. In this study, cytotoxic T lymphocytes (CTLs) were genetically engineered to gain CD44v7/8 target specificity. METHODS: Clone 96 (Cl96), an established murine cytotoxic T-cell line, and naïve murine T cells were retrovirally transduced with a fusion gene construct encoding for the single chain fragment scFv of the monoclonal antibody VFF17 and for the zeta chain of the T-cell receptor (TCR). The therapeutic potential of genetically engineered T cells was tested in vitro and in vivo. RESULTS: Surface expression of the chimeric TCR on infected Cl96 and naïve T cells was shown by FACS analysis. CD44v7/8-positive target cells were efficiently lysed by transduced Cl96 and naïve T cells, demonstrating the functionality and specificity of the chimeric TCR. In a xenograft BALB/c mouse model, efficient growth retardation of CD44v7/8-positive tumours was mediated by genetically engineered Cl96(VFF17)cyYZ cells. CONCLUSIONS: We were able to reprogramme the target specificity of recombinant Cl96 and naïve CTLs resulting in efficient cytolysis of CD44v7/8-positive cervical cancer cells. High transduction rates and the specific cytolysis of CD44v7/8-redirected CTLs are promising tools for an immune gene therapy approach for advanced cervical cancer.


Assuntos
Células Apresentadoras de Antígenos/imunologia , Terapia Genética/métodos , Linfócitos T Citotóxicos/transplante , Neoplasias do Colo do Útero/imunologia , Neoplasias do Colo do Útero/terapia , Animais , Anticorpos Monoclonais/genética , Linhagem Celular , Feminino , Engenharia Genética , Receptores de Hialuronatos/genética , Receptores de Hialuronatos/imunologia , Imuno-Histoquímica , Imunoterapia Adotiva/métodos , Camundongos , Camundongos Endogâmicos BALB C , Modelos Animais , Receptores de Antígenos de Linfócitos T/genética , Linfócitos T Citotóxicos/imunologia , Fatores de Tempo , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Breast Cancer Res ; 7(6): R1141-52, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16457694

RESUMO

INTRODUCTION: In view of the limited success of available treatment modalities for metastatic breast cancer, alternative and complementary strategies need to be developed. Adenoviral vector mediated strategies for breast cancer gene therapy and virotherapy are a promising novel therapeutic platform for the treatment of breast cancer. However, the promiscuous tropism of adenoviruses (Ads) is a major concern. Employing tissue specific promoters (TSPs) to restrict transgene expression or viral replication is an effective way to increase specificity towards tumor tissues and to reduce adverse effects in non-target tissues such as the liver. In this regard, candidate breast cancer TSPs include promoters of the genes for the epithelial glycoprotein 2 (EGP-2), cyclooxygenase-2 (Cox-2), alpha-chemokine SDF-1 receptor (stromal-cell-derived factor, CXCR4), secretory leukoprotease inhibitor (SLPI) and survivin. METHODS: We employed E1-deleted Ads that express the reporter gene luciferase under the control of the promoters of interest. We evaluated this class of vectors in various established breast cancer cell lines, primary breast cancer cells and finally in the most stringent preclinical available substrate system, constituted by precision cut tissue slices of human breast cancer and liver. RESULTS: Overall, the CXCR4 promoter exhibited the highest luciferase activity in breast cancer cell lines, primary breast cancer cells and breast cancer tissue slices. Importantly, the CXCR4 promoter displayed a very low activity in human primary fibroblasts and human liver tissue slices. Interestingly, gene expression profiles correlated with the promoter activities both in breast cancer cell lines and primary breast cancer cells. CONCLUSION: These data suggest that the CXCR4 promoter has an ideal 'breast cancer-on/liver-off' profile, and could, therefore, be a powerful tool in Ad vector based gene therapy or virotherapy of the carcinoma of the breast.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/terapia , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Terapia Genética , Adenoviridae/genética , Linhagem Celular Tumoral , Feminino , Fibroblastos , Marcadores Genéticos , Vetores Genéticos , Humanos , Fígado/citologia , Luciferases/biossíntese , Regiões Promotoras Genéticas , Receptores CXCR4 , Tropismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...